Serverless Performance Simulator
Release 0.1.2

Nima Mahmoudi

Jun 24, 2020

CONTENTS:

1 Installation

2 Serverless Simulator

3 Temporal Simulator
3.1 Serverless Temporal Simulator
3.2 Exponential Temporal Simulator e e e

4 Simulated Process

5 API Reference
5.1 ServerlessSimulator L L e e e e
5.2 ServerlessTemporalSimulator
5.3 FunctionInsStance e e e e e e e e
5.4 SIMProcess e e e e e e e e
5.5 ULty . . . o e e e e e e e e e

6 Indices and tables

Python Module Index

Index

11
11
11

13

17
17
21
22
23
25

27

29

31

Serverless Performance Simulator, Release 0.1.2

This is a project done in PACS Lab aiming to develop a performance simulator for serverless computing platforms.
Using this simulator, we can calculate Quality of Service (QoS) metrics like average response time, average probability
of cold start, average running servers (directly reflecting average cost), histogram of different events, distribution of
number of servers throughout time, and many other characteristics.

The developed performance model can be used to debug/improve analytical performance models, try new and im-
proved management schema, or dig up a whole lot of properties of a common modern scale-per-request serverless
platforms.

You can check out the source code in our Github Repository.

CONTENTS: 1

https://pacs.eecs.yorku.ca/
https://github.com/pacslab/serverless-performance-simulator

Serverless Performance Simulator, Release 0.1.2

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

Install using pip:

’pip install pacssim

Upgrading using pip:

’pip install pacssim —--upgrade

For installation in development mode:

git clone https://github.com/pacslab/serverless—-performance-simulator
cd serverless-performance-simulator
pip install -e

And in case you want to be able to execute the examples:

pip install -r examples/requirements.txt

Serverless Performance Simulator, Release 0.1.2

4 Chapter 1. Installation

CHAPTER
TWO

SERVERLESS SIMULATOR

class pacssim.ServerlessSimulator.ServerlessSimulator (arrival_process=None,
warm_service_process=None,
cold_service_process=None,
expiration_threshold=600,

max_time=86400, maxi-
mum_concurrency=1000,
**kwargs)

Bases: object

ServerlessSimulator is responsible for executing simulations of a sample serverless computing platform, mainly
for the performance analysis and performance model evaluation purposes.

Parameters

* arrival_process (pacssim.SimProcess.SimProcess, optional) — The
process used for generating inter-arrival samples, if absent, arrival_rate should be passed to
signal exponential distribution, by default None

* warm_service_process (pacssim.SimProcess.SimProcess, optional)
— The process which will be used to calculate service times, if absent, warm_service_rate
should be passed to signal exponential distribution, by default None

* cold_service_process (pacssim.SimProcess.SimProcess, optional)
— The process which will be used to calculate service times, if absent, cold_service_rate
should be passed to signal exponential distribution, by default None

* expiration_threshold (float, optional)- The period of time after which the
instance will be expired and the capacity release for use by others, by default 600

* max_time (float, optional)- The maximum amount of time for which the simu-
lation should continue, by default 24*60*60 (24 hours)

* maximum_concurrency (int, optional)-The maximum number of concurrently
executing function instances allowed on the system This will be used to determine when a
rejection of request should happen due to lack of capacity, by default 1000

Raises
* Exception — Raises if neither arrival_process nor arrival_rate are present
* Exception — Raises if neither warm_service_process nor warm_service_rate are present
* Exception — Raises if neither cold_service_process nor cold_service_rate are present

* ValueError — Raises if warm_service_rate is smaller than cold_service_rate

Serverless Performance Simulator, Release 0.1.2

analyze_custom_states (hist_states, skip_init_time=None, skip_init_index=None)
Analyses a custom states list and calculates the amount of time spent in each state each time we enterred
that state, and the times at which transitions have happened.

Parameters

e hist_states (1ist [object])- The states calculated, should have the same dimen-
sions as the hist_* arrays.

* skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

* skip_init_index (int, optional) - The number of indices skipped in the be-
ginning, by default None

Returns (residence_times, transition_times) where residence_times is an array of the amount of
times we spent in each state, and transition_times are the moments of time at which each
transition has occured

Return type list[float], list[float]

calculate_time_average (values, skip_init_time=None, skip_init_index=None)
calculate_time_average calculates the time-averaged of the values passed in with optional skipping a spe-
cific number of time steps (skip_init_index) and a specific amount of time (skip_init_time).

Parameters

* values (11ist)— A list of values with the same dimensions as history array (number of
transitions)

* skip_init time (Float, optional)-— Amount of time skipped in the beginning
to let the transient part of the solution pass, by default None

* skip_init_index ([type], optional)- Number of steps skipped in the begin-
ning to let the transient behaviour of system pass, by default None

Returns returns (ung_vals, val_times) where unq_vals is the unique values inside the values list
and val_times is the portion of the time that is spent in that value.

Return type (list, list)

calculate_time_lengths ()
Calculate the time length for each step between two event transitions. Records the values in
self.time_lengths.

cold_start_arrival (¢)
Goes through the process necessary for a cold start arrival which includes generation of a new function
instance in the COLD state and adding it to the cluster.

Parameters t (float)— The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

generate_trace (debug_print=False, progress=False)
Generate a sample trace.

Parameters

* debug_print (bool, optional) - If True, will print each transition occuring dur-
ing the simulation, by default False

* progress (bool, optional) — Whether or not the progress should be outputted
using the tgdm library, by default False

6 Chapter 2. Serverless Simulator

Serverless Performance Simulator, Release 0.1.2

Raises Exception — Raises of FunctionInstance enters an unknown state (other than /DLE for
idle or TERM for terminated) after making an internal transition

get_average_lifespan ()
Get the average lifespan of each instance, calculated by the amount of time from creation of instance, until
its expiration.

Returns The average lifespan
Return type float

get_average_residence_times (hist_states, skip_init_time=None, skip_init_index=None)
Get the average residence time for each state in custom state encoding.

Parameters

e hist_states (list [object])- The states calculated, should have the same dimen-
sions as the hist_* arrays.

e skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

* skip_init_index (int, optional)— The number of indices skipped in the be-
ginning, by default None

Returns The average residence time for each state, averaged over the times we transitioned into
that state

Return type float

get_average_server_count ()
Get the time-average server count.

Returns Average server count
Return type float

get_average_server_idle_count ()
Get the time-averaged idle server count.

Returns Average idle server coutn
Return type float

get_average_server_running_ count ()
Get the time-averaged running server count.

Returns Average running server coutn
Return type float

get_cold_start_prob ()
Get the probability of cold start for the simulated trace.

Returns The probability of cold start calculated by dividing the number of cold start requests,
over all requests

Return type float

get_index_after_ time (f)
Get the first historical array index (for all arrays storing hisotrical events) that is after the time t.

Parameters t (f1oat)— The time in the beginning we want to skip
Returns The calculated index in self.hist_times

Return type int

Serverless Performance Simulator, Release 0.1.2

get_request_custom_states (hist_states, skip_init_time=None, skip_init_index=None)
Get request statistics for an array of custom states.

Parameters

* hist_states (l1ist[object])— Anarray of custom states calculated by the user for
which the statistics should be calculated, should be the same size as hist_* objects, these
values will be used as the keys for the returned dataframe.

* skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

e skip_init_index (int, optional) — The number of indices that should be
skipped in the beginning to calculate steady-state results, by default None

Returns A pandas dataframe including different statistics like p_cold (probability of cold start)
Return type pandas.DataFrame

get_result_dict ()
Get the results of the simulation as a dict, which can easily be integrated into web services.

Returns A dictionary of different characteristics.
Return type dict

get_skip_init (skip_init_time=None, skip_init_index=None)
Get the minimum index which satisfies both the time and index count we want to skip in the beginning of
the simulation, which is used to reduce the transient effect for calculating the steady-state values.

Parameters

e skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

* skip_init_index ([type], optional)-The number of indices we want to skip
in the historical events, by default None

Returns The number of indices after which both index and time requirements are satisfied
Return type int

get_trace_end()
Get the time at which the trace (one iteration of the simulation) has ended. This mainly due to the fact that
we keep on simulating until the trace time goes beyond max_time, but the time is incremented until the

next event.
Returns The time at which the trace has ended
Return type float

has_server ()
Returns True if there are still instances (servers) in the simulated platform, False otherwise.

Returns Whether or not the platform has instances (servers)
Return type bool

static print_time_average (vals, probs, column_width=15)
Print the time average of states.

Parameters
* vals (1ist [object])— The values for which the time average is to be printed

* probs (1ist [float])— The probability of each of the members of the values array

8 Chapter 2. Serverless Simulator

Serverless Performance Simulator, Release 0.1.2

* column_width (int, optional)— The width of the printed result for vals, by de-
fault 15

print_trace_results()
Print a brief summary of the results of the trace.

req()
Generate a request inter-arrival from self.arrival_process

Returns The generated inter-arrival sample
Return type float

reset_trace()
resets all the historical data to prepare the class for a new simulation

schedule_warm_instance (1)
Goes through a process to determine which warm instance should process the incoming request.

Parameters t (float)— The time at which the scheduling is happening
Returns The function instances that the scheduler has selected for the incoming request.
Return type pacssim.Functionlnstance. Functionlnstance

trace_condition (1)
The condition for resulting the trace, we continue the simulation until this function returns false.

Parameters t (fIoat)— current time in the simulation since the start of simulation
Returns True if we should continue the simulation, false otherwise
Return type bool

warm_ start_arrival (r)
Goes through the process necessary for a warm start arrival which includes selecting a warm instance for
processing and recording the request information.

Parameters t (f1oat)— The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

Serverless Performance Simulator, Release 0.1.2

10 Chapter 2. Serverless Simulator

CHAPTER
THREE

TEMPORAL SIMULATOR

In this family of classes, we want to extract temporal characteristics using execution of simulations. We can extract
average estimates by average over several executions of the simulation (sample average). All of these classes extend
the functionality provided by ServerlessSimulator, youcan use the same arguments and call the same methods,
with some exteded functionality provided below.

3.1 Serverless Temporal Simulator

class pacssim.ServerlessTemporalSimulator.ServerlessTemporalSimulator (running_function_instances,
idle_function_instances,
*args,
*kkwargs)
Bases: pacssim.ServerlessSimulator.ServerlessSimulator

ServerlessTemporalSimulator extends ServerlessSimulator to enable extraction of temporal characteristics. Also
gets all of the arguments accepted by ServerlessSimulator

Parameters

* running_ function_instances (Ilist [FunctionInstance])— A list contain-
ing the running function instances

* idle_function_instances (list[FunctionInstance]) — A list containing
the idle function instances

3.2 Exponential Temporal Simulator

The exponential temporal simulator assume exponential inter-event distribution for both arrival and departure from
each function instance.

class pacssim.ServerlessTemporalSimulator.ExponentialServerlessTemporalSimulator (running_funct
idle_function_
*args,
*Ekwargs)
Bases: pacssim.ServerlessTemporalSimulator.ServerlessTemporalSimulator

ExponentialServerlessTemporalSimulator is a simulator assuming exponential distribution for proceesing times
which means each process is state-less and we can generate a service time and use that from now on. This class
extends ServerlessTemporalSimulator which has functionality for other processes as well.

Parameters

11

Serverless Performance Simulator, Release 0.1.2

* running_ function_instance_count (integer) - run-
ning_function_instance_count is the number of instances currently processing a request

e idle_function_instance_next_terminations (list[float]) -
idle_function_instance_next_terminations is an array of next termination scheduled
for idle functions if they receive no new requests.

12 Chapter 3. Temporal Simulator

CHAPTER
FOUR

SIMULATED PROCESS

class pacssim.SimProcess.ConstSimProcess (rate)
Bases: pacssim.SimProcess.SimProcess

ConstSimProcess extends the functionality of SimProcess for constant processes, meaning this is a determin-
istic process and fires exactly every I/rate seconds. This class does not implement the pdf and cdf functions.

rate [float] The rate at which the process should fire off

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

class pacssim.SimProcess.ExpSimProcess (rafe)
Bases: pacssim.SimProcess.SimProcess

ExpSimProcess extends the functionality of SimProcess for exponentially distributed processes. This class
also implements the pdf and cdf functions which can be used for visualization purposes.

rate [float] The rate at which the process should fire off

cdf (x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (f1oat) — The time for which the cdf value (density) should be returned

Raises Not ImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf (x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (f1oat)— The time for which the pdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

class pacssim.SimProcess.GaussianSimProcess (rate, std)
Bases: pacssim.SimProcess.SimProcess

GaussianSimProcess extends the functionality of SimProcess for gaussian processes. This class also imple-
ments the pdf and cdf functions which can be used for visualization purposes.

13

Serverless Performance Simulator, Release 0.1.2

rate [float] The rate at which the process should fire off
std [float] The standard deviation of the simulated process

cdf (x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (f1oat)— The time for which the cdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf (x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (f1oat)— The time for which the pdf value (density) should be returned

Raises Not ImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

class pacssim.SimProcess.SimProcess
Bases: object

SimProcess gives us a single interface to simulate different processes. This will later on be used to simulated
different processes and compare them agaist a custom analytical model. In the child class, after performing
super().__init__(), properties self-has_pdf and self-has_cdf by default value of False will be created. In case
your class has the proposed PDF and CDF functions available, you need to override these values in order for
your model PDF to show up in the output plot.

cdf (x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (f1oat)— The time for which the cdf value (density) should be returned

Raises Not ImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf (x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (f1oat)— The time for which the pdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

visualize (num_traces=10000, num_bins=100)
visualize function visualizes the PDF and CDF of the simulated process by generating traces from your
function using generate_trace () and converting the resulting histogram values (event counts) to
densities to be comparable with PDF and CDF functions calculated analytically.

num_traces [int, optional] Number of traces we want to generate for calculating the histogram,
by default 10000

14 Chapter 4. Simulated Process

Serverless Performance Simulator, Release 0.1.2

num_bins [int, optional] Number of bins for the histogram which created the density probabili-
ties, by default 100

15

Serverless Performance Simulator, Release 0.1.2

16 Chapter 4. Simulated Process

CHAPTER
FIVE

API REFERENCE

You can also checkout Module Index for a list of all modules implemented in this package.

5.1 ServerlessSimulator

class pacssim.ServerlessSimulator.ServerlessSimulator (arrival_process=None,

warm_service_process=None,
cold_service_process=None,
expiration_threshold=600,

max_time=86400, maxi-
mum_concurrency=1000,
**kwargs)

Bases: object

ServerlessSimulator is responsible for executing simulations of a sample serverless computing platform, mainly
for the performance analysis and performance model evaluation purposes.

Parameters

Raises

arrival_process (pacssim.SimProcess.SimProcess, optional) — The
process used for generating inter-arrival samples, if absent, arrival_rate should be passed to
signal exponential distribution, by default None

warm_service_process (pacssim.SimProcess.SimProcess, optional)
— The process which will be used to calculate service times, if absent, warm_service_rate
should be passed to signal exponential distribution, by default None

cold_service_process (pacssim.SimProcess.SimProcess, optional)
— The process which will be used to calculate service times, if absent, cold_service_rate
should be passed to signal exponential distribution, by default None

expiration_threshold (float, optional)—The period of time after which the
instance will be expired and the capacity release for use by others, by default 600

max_time (float, optional)- The maximum amount of time for which the simu-
lation should continue, by default 24*60%60 (24 hours)

maximum_concurrency (int, optional)-The maximum number of concurrently
executing function instances allowed on the system This will be used to determine when a
rejection of request should happen due to lack of capacity, by default 1000

Exception — Raises if neither arrival_process nor arrival_rate are present

Exception — Raises if neither warm_service_process nor warm_service_rate are present

17

Serverless Performance Simulator, Release 0.1.2

* Exception — Raises if neither cold_service_process nor cold_service_rate are present
e ValueError — Raises if warm_service_rate is smaller than cold_service_rate

analyze_custom_states (hist_states, skip_init_time=None, skip_init_index=None)
Analyses a custom states list and calculates the amount of time spent in each state each time we enterred
that state, and the times at which transitions have happened.

Parameters

* hist_states (list [object])- The states calculated, should have the same dimen-
sions as the hist_* arrays.

* skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

* skip_init_index (int, optional)— The number of indices skipped in the be-
ginning, by default None

Returns (residence_times, transition_times) where residence_times is an array of the amount of
times we spent in each state, and transition_times are the moments of time at which each
transition has occured

Return type list[float], list[float]

calculate_time_average (values, skip_init_time=None, skip_init_index=None)
calculate_time_average calculates the time-averaged of the values passed in with optional skipping a spe-
cific number of time steps (skip_init_index) and a specific amount of time (skip_init_time).

Parameters

* values (1ist)— A list of values with the same dimensions as history array (number of
transitions)

* skip_init_time (Float, optional)— Amount of time skipped in the beginning
to let the transient part of the solution pass, by default None

e skip_init_index ([type], optional)- Number of steps skipped in the begin-
ning to let the transient behaviour of system pass, by default None

Returns returns (ung_vals, val_times) where unq_vals is the unique values inside the values list
and val_times is the portion of the time that is spent in that value.

Return type (list, list)

calculate_time_lengths ()
Calculate the time length for each step between two event transitions. Records the values in
self.time_lengths.

cold_start_arrival (¢)
Goes through the process necessary for a cold start arrival which includes generation of a new function
instance in the COLD state and adding it to the cluster.

Parameters t (float)— The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

generate_trace (debug_print=False, progress=False)
Generate a sample trace.

Parameters

* debug_print (bool, optional)— If True, will print each transition occuring dur-
ing the simulation, by default False

18 Chapter 5. API Reference

Serverless Performance Simulator, Release 0.1.2

* progress (bool, optional) — Whether or not the progress should be outputted
using the tqdm library, by default False

Raises Exception — Raises of FunctionInstance enters an unknown state (other than /DLE for
idle or TERM for terminated) after making an internal transition

get_average_lifespan ()
Get the average lifespan of each instance, calculated by the amount of time from creation of instance, until
its expiration.

Returns The average lifespan
Return type float

get_average_residence_times (hist_states, skip_init_time=None, skip_init_index=None)
Get the average residence time for each state in custom state encoding.

Parameters

e hist_states (1ist [object])- The states calculated, should have the same dimen-
sions as the hist_* arrays.

* skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

* skip_init_index (int, optional) - The number of indices skipped in the be-
ginning, by default None

Returns The average residence time for each state, averaged over the times we transitioned into
that state

Return type float

get_average_server_count ()
Get the time-average server count.

Returns Average server count
Return type float

get_average_server_idle_count ()
Get the time-averaged idle server count.

Returns Average idle server coutn
Return type float

get_average_server_running count ()
Get the time-averaged running server count.

Returns Average running server coutn
Return type float

get_cold_start_prob()
Get the probability of cold start for the simulated trace.

Returns The probability of cold start calculated by dividing the number of cold start requests,
over all requests

Return type float

get_index_after_time (1)
Get the first historical array index (for all arrays storing hisotrical events) that is after the time t.

Parameters t (f1oat)— The time in the beginning we want to skip

5.1.

ServerlessSimulator 19

Serverless Performance Simulator, Release 0.1.2

Returns The calculated index in self.hist_times
Return type int

get_request_custom_states (hist_states, skip_init_time=None, skip_init_index=None)
Get request statistics for an array of custom states.

Parameters

* hist_states (l1ist [object])— An array of custom states calculated by the user for
which the statistics should be calculated, should be the same size as hist_* objects, these
values will be used as the keys for the returned dataframe.

* skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

* skip_init_index (int, optional) — The number of indices that should be
skipped in the beginning to calculate steady-state results, by default None

Returns A pandas dataframe including different statistics like p_cold (probability of cold start)
Return type pandas.DataFrame

get_result_dict ()
Get the results of the simulation as a dict, which can easily be integrated into web services.

Returns A dictionary of different characteristics.
Return type dict

get_skip_init (skip_init_time=None, skip_init_index=None)
Get the minimum index which satisfies both the time and index count we want to skip in the beginning of
the simulation, which is used to reduce the transient effect for calculating the steady-state values.

Parameters

* skip_init_time (float, optional)-The amount of time skipped in the begin-
ning, by default None

e skip_init_index ([type], optional)-The number of indices we want to skip
in the historical events, by default None

Returns The number of indices after which both index and time requirements are satisfied
Return type int

get_trace_end()
Get the time at which the trace (one iteration of the simulation) has ended. This mainly due to the fact that
we keep on simulating until the trace time goes beyond max_time, but the time is incremented until the
next event.

Returns The time at which the trace has ended
Return type float

has_server ()
Returns True if there are still instances (servers) in the simulated platform, False otherwise.

Returns Whether or not the platform has instances (servers)
Return type bool

static print_time_average (vals, probs, column_width=15)
Print the time average of states.

Parameters

20 Chapter 5. API Reference

Serverless Performance Simulator, Release 0.1.2

* vals (1ist [object])— The values for which the time average is to be printed
* probs (1ist [float])— The probability of each of the members of the values array

* column width (int, optional)- The width of the printed result for vals, by de-
fault 15

print_trace_results ()
Print a brief summary of the results of the trace.

req()
Generate a request inter-arrival from self.arrival_process

Returns The generated inter-arrival sample
Return type float

reset_trace ()
resets all the historical data to prepare the class for a new simulation

schedule_warm instance (1)
Goes through a process to determine which warm instance should process the incoming request.

Parameters t (f1oat)— The time at which the scheduling is happening
Returns The function instances that the scheduler has selected for the incoming request.
Return type pacssim.Functionlnstance. Functionlnstance

trace_condition (f)
The condition for resulting the trace, we continue the simulation until this function returns false.

Parameters t (float) - current time in the simulation since the start of simulation
Returns True if we should continue the simulation, false otherwise
Return type bool

warm_start_arrival (7)
Goes through the process necessary for a warm start arrival which includes selecting a warm instance for
processing and recording the request information.

Parameters t (float)— The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

5.2 ServerlessTemporalSimulator

class pacssim.ServerlessTemporalSimulator.ExponentialServerlessTemporalSimulator (running_funct
idle_function_
*args,

*rkwargs)
Bases: pacssim.ServerlessTemporalSimulator.ServerlessTemporalSimulator

ExponentialServerlessTemporalSimulator is a simulator assuming exponential distribution for proceesing times
which means each process is state-less and we can generate a service time and use that from now on. This class
extends ServerlessTemporalSimulator which has functionality for other processes as well.

Parameters

* running_function_instance_count (integer) - run-
ning_function_instance_count is the number of instances currently processing a request

5.2. ServerlessTemporalSimulator 21

Serverless Performance Simulator, Release 0.1.2

e idle_function_ instance next_ terminations (list[float]) -
idle_function_instance_next_terminations is an array of next termination scheduled
for idle functions if they receive no new requests.

class pacssim.ServerlessTemporalSimulator.ServerlessTemporalSimulator (running_function_instances,
idle_function_instances,
*args,
**kwargs)
Bases: pacssim.ServerlessSimulator.ServerlessSimulator

ServerlessTemporalSimulator extends ServerlessSimulator to enable extraction of temporal characteristics. Also
gets all of the arguments accepted by ServerlessSimulator

Parameters

* running_ function_instances (1ist [FunctionInstance])— A list contain-
ing the running function instances

* idle_function_instances (list[FunctionInstance]) — A list containing
the idle function instances

5.3 Functionlnstance

class pacssim.FunctionInstance.FunctionInstance (7, cold_service_process,
warm_service_process, expira-

tion_threshold)
Bases: object

Functionlnstance aims to simulate the behaviour of a function instance in a serverless platform, with all the
internal transitions necessary.

Parameters
* t (float)— The time at which the instance is being created

* cold_service_process (pacssim.SimProcess.SimProcess) — The process
used to sample cold start response times

* warm_service_process (pacssim.SimProcess.SimProcess) — The process
used to sample warm start response times

* expiration_threshold (fIoat) - The amount of time it takes for an instance to get
expired and the resources consumed by it released after processing the last request

arrival transition (¢)
Make an arrival transition, which causes the instance to go from IDLE to WARM

Parameters t (float) — The time at which the transition has occured, this also updates the
next termination.

Raises Exception — Raises if currently process a request by being in COLD or WARM states
get_life_span()

get_next_departure (1)
Get the time until the next departure

Parameters t (fIoat)— Current time
Returns Amount of time until the next departure

Return type float

22 Chapter 5. API Reference

Serverless Performance Simulator, Release 0.1.2

Raises Exception — Raises if called after the departure

get_next_termination (1)
Get the time until the next termination

Parameters t (fIoat)— Current time

Returns Amount of time until the next termination

Return type float

Raises Exception — Raises if called after the termination

get_next_transition_time (1=0)
Get how long until the next transition.

Parameters t (fl1oat, optional)- The currenttime, by default O
Returns The seconds remaining until the next transition
Return type float

get_state()

is_idle ()
Whether or not the instance is currently idle, and thus can accept new requests.

Returns True if idle, false otherwise
Return type bool

make_transition()
Make the next internal transition, either transition into /DLE of already processing a request, or TERM if
scheduled termination has arrived.

Returns The state after making the internal transition
Return type str

Raises Exception — Raises if already in TERM state, since no other internal transitions are
possible

update_next_termination ()
Update the next scheduled termination if no other requests are made to the instance.

5.4 SimProcess

class pacssim.SimProcess.ConstSimProcess (rate)
Bases: pacssim.SimProcess.SimProcess

ConstSimProcess extends the functionality of SimProcess for constant processes, meaning this is a determin-
istic process and fires exactly every 1/rate seconds. This class does not implement the pdf and cdf functions.

rate [float] The rate at which the process should fire off

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

5.4. SimProcess 23

Serverless Performance Simulator, Release 0.1.2

class pacssim.SimProcess.ExpSimProcess (rafe)
Bases: pacssim.SimProcess.SimProcess

ExpSimProcess extends the functionality of SimProcess for exponentially distributed processes. This class
also implements the pdf and cdf functions which can be used for visualization purposes.

rate [float] The rate at which the process should fire off

cdf (x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (£1oat)— The time for which the cdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf (x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (f1oat)— The time for which the pdf value (density) should be returned

Raises Not ImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

class pacssim.SimProcess.GaussianSimProcess (rate, std)
Bases: pacssim.SimProcess.SimProcess

GaussianSimProcess extends the functionality of SimProcess for gaussian processes. This class also imple-
ments the pdf and cdf functions which can be used for visualization purposes.

rate [float] The rate at which the process should fire off
std [float] The standard deviation of the simulated process

cdf (x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (f1oat)— The time for which the cdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf (x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (f1oat)— The time for which the pdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

class pacssim.SimProcess.SimProcess
Bases: object

24 Chapter 5. API Reference

Serverless Performance Simulator, Release 0.1.2

SimProcess gives us a single interface to simulate different processes. This will later on be used to simulated
different processes and compare them agaist a custom analytical model. In the child class, after performing
super().__init__(), properties self.has_pdf and self.has_cdf by default value of False will be created. In case
your class has the proposed PDF and CDF functions available, you need to override these values in order for
your model PDF to show up in the output plot.

cdf (x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (fI1oat)— The time for which the cdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace ()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf (x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (f1oat)— The time for which the pdf value (density) should be returned

Raises NotImplementedError — By default, this function raises NotImplementedError un-
less overriden by a child class.

visualize (num_traces=10000, num_bins=100)
visualize function visualizes the PDF and CDF of the simulated process by generating traces from your
function using generate_trace () and converting the resulting histogram values (event counts) to
densities to be comparable with PDF and CDF functions calculated analytically.

num_traces [int, optional] Number of traces we want to generate for calculating the histogram,
by default 10000

num_bins [int, optional] Number of bins for the histogram which created the density probabili-
ties, by default 100

5.5 Utility

pacssim.Utility.convert_hist_pdf (_values, num_bins)
convert_hist_pdf converts the histogram resulting from _values and num_bins to a density plot by dividing the
probability of falling into a bin by the bin size, converting the values to density. The resulting values could be
plotted and compared with the analytical pdf and cdf functions.

_values [list[float]] A list of values that we want to analyze and calculate the histogram for
num_bins [int] Number of bins used for generating the histogram

list[float], list[float], list[float] base, values, cumulative are returned which are the histogram bases,
density values, and cumulative densities which can be compared with the analytical cdf function

5.5. Utility 25

Serverless Performance Simulator, Release 0.1.2

26 Chapter 5. API Reference

CHAPTER
SIX

INDICES AND TABLES

* genindex
¢ modindex

¢ search

27

Serverless Performance Simulator, Release 0.1.2

28 Chapter 6. Indices and tables

P

pacssim.
pacssim.
pacssim.
pacssim.
pacssim.

FunctionInstance, 22
ServerlessSimulator, 17
ServerlessTemporalSimulator, 21
SimProcess, 13

Utility,25

PYTHON MODULE INDEX

29

Serverless Performance Simulator, Release 0.1.2

30 Python Module Index

A

analyze_custom_states () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 5, 18

arrival_transition () (pac-
ssim.FunctionInstance. Functionlnstance
method), 22

calculate_time_average () (pac-

ssim.ServerlessSimulator.ServerlessSimulator
method), 6, 18

calculate_time_lengths () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 6, 18

cdf () (pacssim.SimProcess.ExpSimProcess method),
13,24
cdf () (pacssim.SimProcess.GaussianSimProcess

method), 14, 24

cdf () (pacssim.SimProcess.SimProcess method), 14, 25

cold_start_arrival () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 6, 18

ConstSimProcess (class in pacssim.SimProcess), 13,
23

convert_hist_pdf () (in module pacssim.Utility),
25

E

ExponentialServerlessTemporalSimulator

(class in pac-
ssim.ServerlessTemporalSimulator), 11,
21

ExpSimProcess (class in pacssim.SimProcess), 13,23

F

FunctionInstance (class in pac-
ssim.Functionlnstance), 22
GaussianSimProcess (class in pac-

ssim.SimProcess), 13, 24

INDEX

generate_trace () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 6, 18

generate_trace() (pac-
ssim.SimProcess.ConstSimProcess method),
13,23

generate_trace () (pac-
ssim.SimProcess.ExpSimProcess method),
13,24

generate_trace () (pac-
ssim.SimProcess.GaussianSimProcess
method), 14, 24

generate_trace () (pac-
ssim.SimProcess.SimProcess method), 14,
25

get_average_lifespan () (pac-

ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_average_residence_times () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_average_server_count () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_average_server_idle_count () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_average_server_running_count () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_cold_start_prob () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_index_after_time () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 19

get_life_span() (pac-
ssim.FunctionInstance. FunctionInstance
method), 22

get_next_departure () (pac-

ssim. Functionlnstance. Functionlnstance

method), 22

31

Serverless Performance Simulator, Release 0.1.2

get_next_termination () (pac-
ssim. FunctionInstance. Functionlnstance
method), 23

get_next_transition_time ()
ssim. Functionlnstance. Functionlnstance
method), 23

get_request_custom_states () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 7, 20

get_result_dict () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 8, 20

get_skip_init () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 8, 20

(pac-

get_state () (pacssim.Functionlnstance. Functionlnstangésset _trace ()

method), 23

get_trace_end() (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 8, 20

H

has_server () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 8, 20

pdf () (pacssim.SimProcess.ExpSimProcess method),
13,24
pdf () (pacssim.SimProcess.GaussianSimProcess

method), 14, 24
pdf () (pacssim.SimProcess.SimProcess method), 14,25
print_time_average () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
static method), 8, 20
print_trace_results/() (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 9, 21

R

req () (pacssim.ServerlessSimulator.ServerlessSimulator
method), 9, 21

(pac-

ssim.ServerlessSimulator.ServerlessSimulator

method), 9, 21

schedule_warm_instance () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 9, 21

ServerlessSimulator (class in
ssim.ServerlessSimulator), 5, 17

ServerlessTemporalSimulator (class in pac-
ssim.ServerlessTemporalSimulator), 11, 22

pac-

is_idle () (pacssim.Functionlnstance.Functionlnstance SimProcess (class in pacssim.SimProcess), 14, 24

method), 23

M

make_transition ()
ssim.FunctionInstance. Functionlnstance
method), 23

(pac-

module
pacssim.
pacssim.

FunctionInstance, 22
ServerlessSimulator, 17
pacssim.
21
pacssim.
pacssim.

SimProcess, 13,23
Utility,?25

P

pacssim.FunctionInstance
module, 22
pacssim.ServerlessSimulator
module, 17
pacssim.ServerlessTemporalSimulator
module, 21
pacssim.SimProcess
module, 13,23
pacssim.Utility
module, 25

ServerlessTemporalSimulator,

T

trace_condition () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 9, 21

U

update_next_termination ()
ssim.Functionlnstance. Functionlnstance
method), 23

(pac-

Vv

visualize () (pacssim.SimProcess.SimProcess
method), 14, 25

W

warm_start_arrival () (pac-
ssim.ServerlessSimulator.ServerlessSimulator
method), 9, 21

32

Index

	Installation
	Serverless Simulator
	Temporal Simulator
	Serverless Temporal Simulator
	Exponential Temporal Simulator

	Simulated Process
	API Reference
	ServerlessSimulator
	ServerlessTemporalSimulator
	FunctionInstance
	SimProcess
	Utility

	Indices and tables
	Python Module Index
	Index

